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OBJECTIVES: Prediction of cochlear implantation (CI) outcome is often difficult because outcomes vary among patients. Though the brain plas-
ticity across modalities during deafness is associated with individual CI outcomes, longitudinal observations in multiple patients are scarce. 
Therefore, we sought a prediction system based on cross-modal plasticity in a longitudinal study with multiple patients.

METHODS: Classification of CI outcomes between excellent or poor was tested based on the features of brain cross-modal plasticity, measured 
using event-related responses and their corresponding electromagnetic sources. A machine learning estimation model was applied to 13 datas-
ets from 3 patients based on linear supervised training. Classification efficiency was evaluated comparing prediction accuracy, sensitivity/speci-
ficity, total mis-classification cost, and training time among feature set conditions.

RESULTS: Combined feature sets with the sensor and source levels dramatically improved classification accuracy between excellent and poor 
outcomes. Specifically, the tactile feature set best explained CI outcome (accuracy, 98.83 ± 2.57%; sensitivity, 98.00 ± 0.01%; specificity, 98.15 ± 
4.26%; total misclassification cost, 0.17 ± 0.38; training time, 0.51 ± 0.09 sec), followed by the visual feature (accuracy, 93.50 ± 4.89%; sensitivity, 
89.17 ± 8.16%; specificity, 98.00 ± 0.01%; total misclassification cost, 0.65 ± 0.49; training time, 0.38 ± 0.50 sec).

CONCLUSION: Individual tactile and visual processing in the brain best classified the current status when classified by combined sensor–source 
level features. Our results suggest that cross-modal brain plasticity due to deafness may provide a basis for classifying the status. We expect this 
novel method to contribute to the evaluation and prediction of CI outcomes.
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INTRODUCTION
Prediction of the benefit by cochlear implantation (CI) is often difficult because outcomes vary among patients. Multiple factors 
have been tested to identify those that best predict speech perception after CI, such as the duration of deafness, age at implanta-
tion, and length of CI usage.1,2

However, the duration of deafness only explains 20% of outcomes, as evidenced by a histopathological study.3 Moreover, Gantz et al. 
tested several predictive candidate factors in 48 post-lingual deaf adults; they observed no relationship with the duration of deaf-
ness but found positive correlations (r = 0.81) with the Iowa Sentence Test and the Northwestern University Auditory Test No. 6 word 
score,4 which were weak relationships.

Kang  et  al.5 acknowledged the importance of predictive factors after CI and discussed the limiting factors between good and 
poor outcome groups. Prenatal problems (P = .005; odds ratio (OR), 4.878) and a narrow bony cochlear nerve canal (P = .046; OR, 
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4.785) differed significantly between groups, as well as inner ear 
(P = .003) and intraoperative (P = .045) problems. The timing of 
implantation did not contribute to prediction of outcomes in their 
cohort, presumably due to the participants being pre-lingual.

Electrophysiological observations are used to identify interrelation-
ships with speech performance after CI. The pre-operative auditory 
brainstem response and area ratio of the vestibulocochlear nerve 
have been proposed as optimal predictors of CI outcomes in patients 
with a cochlear nerve deficiency,6 but these factors did not predict 
sufficiently.

Cortical plasticity has recently been discussed in the context of 
auditory deprivation and the potential for reversal after CI. A posi-
tive correlation was detected between high speech performance 
and regional cerebral blood flow (rCBF) level in the auditory brain 
regions using 18F-fluorodeoxyglucose ([18F]-FDG) positron emission 
tomography imaging.7 Moreover, a possibility of the functional rela-
tionship between visual activity and CI outcome was addressed as 
functionally relevant. Giraud and Truy focused on the visual depen-
dency of patients who had undergone CI in terms of speech com-
prehension; they found robust activation in the visual face area in 
CI users.8 Kang et al. also observed a significant increase in [18F]-FDG 
uptake in the medial visual areas, but this was not correlated with 
patient outcomes.9 Additionally, Green et al. reported no significant 
increase of visual activity at 1 year after CI; no significant changes of 
lateralization in auditory cortical activation were observed either at 
the time of CI or during the first-year imaging results.10

Kim et al.11 reported the auditory–visual cross-modal plasticity as a 
predictive factor of CI outcomes. In the poorly performing CI group, 
P1 evoked by visual stimuli showed enhanced amplitude in the 
temporal region, comparable to the good performance CI group. 
The poor performance CI group also showed reduced amplitude of 
P1 in the occipital region, unlike the good performance and control 
groups. They concluded that insufficient restoration of the audi-
tory circuit might have caused negative performance after CI. Even 
though the test was performed only after CI, this result shed implica-
tive light on the possibility of a cross-modal plasticity as a predicting 
factor.

For the longer follow-up study up until 27 months after CI, Glick and 
Sharma concluded that a significant benefit had been conferred in a 
child with single-sided deafness; moreover, they found clear reversal 

of somatosensory recruitment and only residual visual cross-modal 
plasticity.12 Despite the single case result, the study may provide the 
possibility of the cross-modal plasticity as a predicting factor.

The aforementioned studies indicate the difficulty of extracting pre-
dictive factors for CI outcomes, as there is wide variability among 
patients. Machine learning can be of use for extracting elements 
from multiple factors, based on supervised or non-supervised learn-
ing (machine learning). Attempts have been made using machine 
learning to extract factors that best explain various diseases or 
various states (or severity) of a disease such as predicting survival 
period in colon cancer13 or identification of schizophrenia from the 
normal.14 Most common machine learning estimation models apply 
linear supervised training. In electrophysiological research, P30015 or 
mismatch negativity16 components render shared features, because 
these components are known to represent cortical indicators associ-
ated with cognitive decline.

Because electroencephalography (EEG) provides non-invasive and 
objective measurements, we sought to develop EEG biomarkers to 
evaluate and predict CI outcomes. Our hypothesis is based on the 
cortical cross-modal neuroplasticity as an affecting factor. Using 
3 different feature sets (sensor-level, source-level, and combined-
level), good and poor outcomes were classified in multiple patients 
and at multiple time points after CI.

METHODS

Datasets
All the data acquisition was approved by the institutional review 
board of our hospital and was conducted in compliance with the 
Declaration of Helsinki, International Conference on Harmonization 
Guidelines for Good Clinical Practice. Data were acquired at a maxi-
mum of 5 time points for each patient; before CI, and at 3, 6, 12, and 
18 months after CI. At each time point, speech recognition score 
(SRS) was generated using a mono-syllable word test. Group defini-
tions were based on a cutoff threshold of 70%: group 1 was assigned 
when SRS was >70 and group 2 was assigned when SRS was ≤70%, 
based on the institutional criteria. 

EEG Recording and Pre-processing
Scalp EEG data were recorded using CURRY 7 software and a 
SynAmps2 amplifier (Compumedics, Neuroscan, Charlotte, NC, USA) 
from 64 Ag/AgCl scalp electrodes, which were evenly arranged 
based on the 10-20 electrode system. The ground was placed on the 
forehead, while the references were linked to the ears (after CI, the 
reference was placed contralateral to the CI side). In addition, eye 
movements were recorded using a vertical and horizontal electro-
oculogram, along with an electrocardiogram. Impedances were kept 
below 5 kΩ throughout the recording. Two or three electrodes at the 
CI site were excluded. Signals were 0.1-200 Hz band-pass filtered (60 
Hz power-line notched) on-line at a sampling rate of 1000 Hz.

Stimuli and Tasks
Cortical auditory evoked potentials (cAEPs) were evoked using a 
90-ms /ba/ sound recorded by a female speaker.12 Cortical somato-
sensory evoked potentials (cSEPs) were generated by a series of 
20 ms tactile stimulation on the median nerve of the hand, using a 
stimulator (D268, UK). The inter-stimulus intervals were randomized 

MAIN POINTS

•	 Variability in outcomes after cochlear implant impedes the estima-
tion of its benefit.

•	 Using electroencephalography (EEG), we sought objective factors 
of cortical plasticity that best predict CI outcomes.

•	 Datasets were trained and validated using a support vector 
machine (SVM) classification.

•	 Tactile and visual responses in the brain contribute the most to pre-
dicting outcomes.

•	 The combined features of sensor and source levels revealed a clear 
advantage of classification.
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but 2 stimulations were at least 700 ms apart; the intensity was fixed 
at a sub-threshold of 70-80% of the individual motor threshold. 
Participants were instructed to enjoy a silent movie on a PC monitor. 
Pattern reversal consisting of a pair of checkerboards was used for 
the cortical visual evoked potentials (cVEPs) because there was more 
inter-subject VEP variability, relative to flash or pattern onset stimuli.

Sensor-Level Feature Set
The standard pipeline was included, such as eye-blinking artifacts 
and CI-associated and other gross artifacts, which were removed 
based on independent component analysis and second-order blind 
inference17 and further visual inspection. Cleaned data were band-
pass filtered at 1-50 Hz. Across modalities, epochs were rejected 
when the amplitude exceeded ± 100 µV or the slope was not natu-
ral to human physiology. Peaks and latencies were computed across 
all electrodes. CI-side electrodes were interpolated using spherical 
spline interpolation, in accordance with the method of Perrin et al.; 
this method produces better results, although it depends on an infi-
nite series in which the sum is not easily expressed, in contrast to 
pseudo-spherical spline surfaces.18

The data of event-related potential (ERP) were epoched 500 ms 
post-stimulus onset, including a baseline of 100 ms. The remaining 
artifact-free trials were 75-90% (cAEP), 80-95% (cSEP), and 75-95% 
(cVEP) of each data set. After CI, the number of rejected trials 
increased (<10 trials). Peak amplitude and latency were extracted at 
the P1, N1, and P2 components for cAEP and cVEP, and P50 for cSEP 
across all channels. Components × 60 channels were entered as ERP 
features with the group index of either “excellent” or “fair.”

Source-Level Feature Set
Forty sources localized for cAEP (P1, N1, and P2), cSEP (P50), and cVEP 
(P1, N1, and P2) were used as input to the classifier for the source 
level, based on the source localization using cognitive ERPs validated 
as being reliably applicable.19 The inverse problem was solved using 
exact low-resolution brain electromagnetic tomography (eLORETA), 
an advanced version of standardized tomography (sLORETA), which 
calculates the standardized current source density (CSD, μA.mm-2)  
at each of the 6239 voxels across the whole brain.20 The neural 
sources generated by the scalp-recorded activity were estimated in 
each component of the auditory, somatosensory, and visual evoked 
responses. Active sources were defined using the digitized Montreal 
Neurological Institute 152-space template.21

Feature Selection and Classification
To extract the feature set(s) that best discriminated excellent (equiva-
lent to good) from fair CI users, the following aspects were tested: 
(1) the sensor-level feature set alone (amplitude and latency), (2) 
the source feature set alone, and (3) the sensor/source combined. 
To ensure commensurability of the various data types, features were 
scaled to [0 1]. The Fisher score, a common feature selection method, 
was used to provide discriminative measures of individual features 
for classification.22

Training was performed using a support vector machine (SVM), which 
efficiently avoids overfitting in a supervised manner, as evidenced in 
brain–machine interface applications.23 Datasets were divided into 
training and test sets. In order to cross-validate and protect against 
overfitting, the original dataset was partitioned into 10 folds, and 

accuracies were estimated on each fold, using parallel computing in 
MATLAB (2019b, version 9.4). 

Classification Outcome Evaluation
To evaluate classification performance of the feature sets, the follow-
ing 5 measures were used:

Accuracy: (number of correctly classified “excellent” and “fair” datas-
ets)/(total number of datasets).

Training time: duration in seconds 

Sensitivity: (number of correctly classified “excellent” datasets)/(total 
number of datasets).

Specificity: (number of correctly classified “fair” datasets)/(number of 
“fair” datasets).

Total misclassification cost: arbitrary units (0-10)

Prediction speed: number of observations per second

Figure 1 illustrates the procedure for machine learning-based clas-
sification, based on auditory, tactile, and visual processing cortical 
activities.

Statistical testing was performed using SPSS software (version 25.0; 
IBM Corp., Armonk, NY, USA), in-house scripts, and built-in functions 
in MATLAB with the Optimization and Statistics Toolboxes (2014a, 
2019b, Mathworks, Inc., Natick, MA, USA). A P < .05 was considered 
statistically significant; 95% confidence intervals were also calcu-
lated. Data were presented as means ± standard deviations; outliers 
were defined as values that differed from the mean by ± 2 standard 
deviations.

RESULTS
Fourteen sequential EEG recordings were included in the current 
analysis. Table 1 provides demographic details and Table 2 summa-
rizes the dataset characteristics. As shown in Figure 2, the initial com-
parison resulted in the highest classification accuracy by the tactile 
combined-level feature set, followed by the visual combined-level 
and tactile source-level feature sets.

As summarized in Table 3, mean classification accuracies by the sen-
sor level were 76.58 ± 12.47%, 58.66 ± 23.83%, and 79.94 ± 11.18% 
in the auditory, tactile, and visual conditions, respectively. Mean 
classification accuracies by the source level were 65.43 ± 11.86%, 
95.5 ± 4.22%, and 79.98 ± 4.07% in the auditory, tactile, and visual 
conditions, respectively. Mean classification accuracies by the com-
bined-level were 82.71 ± 2.80%, 98.88 ± 2.57%, and 93.5 ± 4.89% in 
the auditory, tactile, and visual conditions, respectively. 

Classification by level significantly differed among the 3 conditions 
(F = 28.563, P = .000); multiple comparisons by Bonferroni corrected 
post hoc test showed no significant difference between sensor and 
source levels (P = .623), whereas they showed significant differences 
between sensor and combined levels (P = .000), as well as source 
and combined levels (P = .029). Classification by modality signifi-
cantly differed among the 3 domains (F = 8.403, P = .000); multiple 
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comparisons showed no significant difference between auditory and 
tactile modalities (P = .178), whereas they showed significant differ-
ences between auditory and visual modalities (P = .029), as well as 
between tactile and visual modalities (P = .000). Sensor-level classi-
fication tended to yield higher accuracies in the auditory and visual 
than in the tactile condition, but the difference was not statistically 
significant.

Training time was shortest in the auditory source-level method 
(0.33 ± 0.08 s), followed by the visual source-level method 
(0.36 ± 0.06 s). Training time was longest for classification with the 
tactile combined-level method (0.51 ± 0.09 s), followed by the audi-
tory combined-level method (0.50 ± 0.07 s).

Figure 3 summarizes the performance of the 4 measures. The anal-
ysis of variance result was not statistically significant for sensitivity 
(F = 1.182,P = .395) or modality (F = 0.174, P = .846), but was significant 
for the level × modality interaction (F = 31.275, P = .000). Sensitivity 

was highest in the tactile combined-level method (99.99%), but was 
not significantly different from the visual combined-level method 
(89.17%), as shown in Figure 3A.

In Figure 3B, the level effect for specificity was marginally signifi-
cant (F = 6.840, P = .051), but the modality effect was not statistically 
significant (F = 1.314, P = .351). The interaction between level and 
modality was significant (F = 8.049, P = .000). The auditory and visual 
combined-level methods showed the highest specificity (99.99%), 
followed by the tactile combined-level method (98.15%). The tactile 
source-level method exhibited relatively high specificity (97.78%), 
compared to other conditions (54.33-84.12%).

In Figure 3C, the effects of total misclassification cost, indicated by 
arbitrary units (0-10), as well as prediction speed and training time, 
yielded non-statistically significant findings for both level and modal-
ity, but the interaction was significant (F = 17.007,P = .000, F = 48.565, 
P = .000, F = 8.531, P = .000). The tactile combined-level method had 
the lowest classification error (i.u. 0.17 ± 0.38), followed by the tactile 

Figure 1.  Procedure for extracting factors that best predict cochlear implantation outcomes. From auditory, tactile and visual stimulation, sensor-level, source-
level or combined-level features were extracted as an input for machine-learning classification. Using a t-test (P < .01), dimension of the features was reduced 
for computational efficiency. Performances among features were compared based on classification accuracy (%), sensitivity/specificity, training time and 
observation speed.

Table 1.  Demographic Details of the Participants

Cohort P01 P02 P03 P04

Sex (M/F) M F M M

Deafness duration (years) 20 20 17 19

Age at CI (years) 33 31 36 59

Device Cochlear/CI422 Cochlear/CI422 MEDEL/Concerto MEDEL/Concerto

CI ear Right Left Right Right
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source-level method (i.u. 0.60 ± 0.55); the tactile sensor-level method 
exhibited the worst total misclassification cost (i.u. 4.55 ± 2.62), fol-
lowed by the auditory source-level method (i.u.3.80 ± 1.30). The 
number of observations was the largest in the tactile source-level 
method (818.00 ± 87.58/s), followed by the tactile combined-level 
method (810.56 ± 44.65/s). The number of observations was the 
smallest in the visual combined-level method (582.00 ± 64.53/s), 
followed by the auditory sensor-level method (585.75 ± 67.67/s), as 
shown in Figure 3D. 

DISCUSSION
We demonstrated that the tactile response in the brain provides a 
powerful predictive factor for current speech recognition ability in 
cochlear implant users. This finding is consistent with the results of a 
previous report regarding the association between speech and per-
ception after CI and cSEP, which indicates cross-modal reorganization 
by the somatosensory modality in children who have undergone CI. 
Tactile stimulation activates the auditory cortical regions in children 
who have undergone CI, in contrast to children with normal hearing; 
this provides information regarding expected patterns of cSEPs and 
current density reconstruction involving postcentral cortices, contra-
lateral to the side of tactile stimulation.24

Our investigation was based on the assumption of cross-modal re-
organization due to deafness, as well as the possibility of functional 
reversal by electrical stimulation. Functional compensation following 
a specific sensory loss might lead to development of a capacity that 
exceeds normal function, as observed in the somatosensory re-orga-
nization in congenitally deaf adults25 and in the auditory/somatosen-
sory re-organization in patients with blindness.26

We achieved 98.3% of maximum classification accuracy with the 
tactile feature set. Our results demonstrate that the combined 
use of sensor-level and source-level feature sets significantly 
improved the classification accuracy from fair to excellent after 
CI. The combined use of sensor-level and source-level feature sets 
is presumed to provide improved classification accuracy, as evi-
denced by the percentages of each feature type; sensor-level only 
(23%), source-level only (64%), and more than 2 (7%), reviewed in 
2007-2011 publications.27

We observed that overall somatosensory activation was obvious 
3 months after CI in a patient (A, defined as an excellent performer 
at this time point); conversely, another patient (B, a fair/poor per-
former at this time point) exhibited additional activation in non-
somatosensory regions, such as auditory and frontal areas. This 
pattern was dramatically modified in patient B after a year, while 
patient A underwent gradual changes to a higher proportion of 
somatosensory activation. Our result might support the enhance-
ment in speech recognition by both electro-tactile and electro-audi-
tory stimulations, in which tactile vibrating patterns converted from 
voice pitch might entrain incorporated auditory and tactile brain 
regions properly and thus improve discrimination of speech intona-
tion contrasts.28

In the current study, auditory re-organization in the brain was shown 
as a non-primary factor in successful classification of CI outcomes, 
specifically in our adult data, in contrast to observations such as the 
reversal of normal tonotopy representation in cochlear implant users 
of >3 months.29 We used the same /ba/ sound to elicit ERP responses, 
in accordance with the approach used by Sharma et al.; their study 
revealed modifications in the ERP waveform at 14 months after CI, as 
well as current density reconstruction at 27 months after CI.12

We also found that functional reversal in the visual domain was a 
powerful predictive factor, followed by the tactile domain, when 
classified with combined feature sets. We chose the pattern reversal 
paradigm to elicit cVEPs based on previous literature that preferred 
the use of pattern reversal cVEPs to obtain estimates regarding 

Table 2.  Summary of the Dataset Characteristics

Dataset ID CI Side Time Point SRS (%) Performance Group*

1 Rt Pre-op 20 2

2 Rt M3 70 2

3 Rt M6 85 1

4 Rt M12 90 1

5 Rt M18 95 1

6 Lt Pre-op 10 2

7 Lt M3 45 2

8 Lt M6 55 2

9 Lt M12 65 2

10 Lt M18 75 1

11 Rt Pre-op 10 2

12 Rt M6 65 2

13 Rt M12 75 1

14 Lt Pre-op 20 2

SRS, speech recognition score. *Performance group definitions were based on a cutoff 
threshold of 70%: group 1 was assigned when SRS was > 70% and group 2 was assigned 
when SRS was ≤ 70%. Lt, left; Rt, right; Pre-op, pre-operation; M3, 6, 12, 18; follow-up at 
3, 6, 12, and 18 months after cochlear implantation.

Figure 2.  Classification accuracies of individual feature set. Error bars indicate 
standard deviations.

Table 3.  Descriptive Statistics of Classification Accuracy Depending on 
Modality and Feature Level

Auditory Tactile Visual F P

Sensora 76.58 (12.47) 58.66 
(23.83)

79.94 
(11.18)

Sourceb 65.42 (11.86) 95.50 
(4.22)

79.98 
(4.07)

Combinedc 82.71 (2.80) 98.88 
(2.57)

93.50 
(4.89)

8.043*** .000

*Mean (SD), Post hoc Bonferroni, a, b < c, ***P < .001.
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form sensing with edges; thus, visual acuity is less variable in terms 
of waveform and timing.30 cVEP is dependent on age; however, 
our patients were not affected (all were 30-50 years of age). Taken 
together, tactile activity in the brain is presumably optimal for predic-
tion of CI outcome in terms of accuracy, sensitivity, total misclassifica-
tion cost, and observation speed.

The limitations of our study include the small sample size and the 
uncontrolled CI site. Nevertheless, longitudinal observations enabled 
us to partially compensate for the small number of patients by pro-
viding different time points with differing outcome statuses. In the 
current study, we only focused on sensor-level, source-level, and 
combined-level classifications; however, connectivity around the 
main auditory and language regions should be further investigated 
in future studies, as electrical stimulation after CI may have caused 
changes in functional network characteristics.
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